

CHAPTER 1

Reinforced Concrete: Mechanics and Technology

CONCRETE AND REINFORCED CONCRETE
Concrete is a mixture of sand, gravel, crushed rock, or other aggregates held together in a rocklike mass with a paste of cement and water. Sometimes one or more admixtures are added to change certain characteristics of the concrete such as its workability, durability, and time of hardening. As with most rocklike substances, concrete has a high compressive strength and a very low tensile strength. Reinforced concrete is a combination of concrete and steel wherein the steel reinforcement provides the tensile strength lacking in the concrete. Steel reinforcing is also capable of resisting compression forces and is used in columns as well as in other situations, which are described later.

Ali R. Emami
Reinforced Concrete: Mechanics and Design

V-Y مقاومت فشارى تك محوره́ بتن

I-Y-Y تعريف مقاومت فشارى بتن و محدودة تغييرات آن

مقاومت فشارى بتن نه تنها به عنوان مهمترين خصوصيت مكانيكى بتن، بلكه به عنوان يكى از مهمترين خواص رفتارى بتن شناخته مىشود. مقاومت فشارى بتن ممكن

 سه لايه و با YQ بار ميلهزدن با ما ميلهاى به قطر

 سرعت باركذارى مشخص ($0.15-0.34 \mathrm{MPa} / \mathrm{sec}$ بر اساس استاندارد درد و تا نقطهُ شكست بارگذارى مىشوندي براى نمونٔ معكبى با

عوامل مؤثر بر مقاومت فشارى بتن Y-Y-Y

با استفاده از اختلاط اولئ يكسان، ممكن است تحت شرايط متفاوت، بتن از خود
 فشارى بتن پرداخته مىشود.

ا- نوع نمونه
نوع نمونه بر مقاومت فشارى بتن اثر مى گذارد؛ به صورتى كه مقاومت فشارى

 ($\left.f_{c}^{\prime} \approx 0.8 f_{c u}^{\prime}\right)$

استوانهاى و مكعبى تقريباً يكسان خواهند بور بود.
علت اصلى تفاوت مقاومت نمونئ استوانهاى و مكعبى را بايد در تفاوت نسبت ابعاد هر كدام از نمونهها، و ايجاد تنشها سطح نمونه به دليل تفاوت در مدول الاستيسيته و ضريب پواسون

 افقى نمونه خواهد بود. بدين ترتيب براى نمونههايى با نسبت ارتفاع به عري
 فقط تحت تأثير تنشهاى خالص فشارى قرار مىگيرد. اين وضعيت مىتواند برآورد واقع بينانهاى از مقاومت فشارى تك محورى حقيقى بتن به دست دهد. در در صورينى كـي كـي

شكل Y-Y توزيع تنشههاى جانبى (اصطكاكى) ناشى /ز تفاوت خصوصيات بتن و صفحئ فولادى اعِمال بار، در ارتفاع نمونهاهاى /ستوانهایى و مكعبى

عامل ديگرى نيز ممكن است در تفاوت مقاومت فشارى نمونههاى مكعبى و استوانهاى دخالت داشته باشد. در نمونهٔ استوانهاى جهت بتنريز ديزى و جهت اعـي

 بتنريزى است. اين مسأله بهخصوص اگر بتن همگًن نباشد، تأثير قابل توجهى بر نتايج آزمايش مى گذارد.

لازم به ذكر است كه امروزه در بسيارى از كشورهاى جهان و از جمله آمريكا، كانادا، استراليا و ايران، از مقاومت فشارى نمونهٔ استوانهاى ('f مقابل در بعضى از كشورهاى ارويايى، مقاومت فشارى نمونهٔ معكبى (f استفاده قرار مى گیرد.

r-اندازء نمونه

 نسبت مقاومت فشارى نمونههاى استوانهاى با نسبت ابعاد •
 ميلىمتر، و همچچنين نسبت مقاومت فشارى نمونههاى مكعبى با ابعاد متفاوت، نسار نسبت به مقاومت فشارى نمونههاى استاندارد با بعد •1ه ميلىمتر را بهدست آورد.
علت تأثير اندازء نمونه بر مقاومت فشارى بتن را مىتوان بان به مسألهٔ احتمالات

 داشت. اين نقاط ضعف، مقاومت فشارى نمونهٔ آزمايشگاهى را تحت تأثير قرار مىدهدهد. هر چֶه بعد نمونه بزرگتر بوده و حجم بتن بيشترباشد، احتمال وجود نقاط ضعيف

 رسيد و ديگر با افزايش بعد نمونه، كاهش مقاومت مشاهده نخواهد شد. اين نكته را

جدول r-1 نسبت مقاومت فشارى نمونههاى با ابعاد غير /ستاندارد به مقاومت فشارى نمونههاى /ستاندارد

 تأثير مى گذارد؛ به صورتى كه هر چه
 فشارى بتن نشان مىدهدـ
دليل افزايش مقاومت فشارى در سرعت بارگذارى بالاتر را مىتوان در پر پديدة
خزش جستجو كرد. هر چه سرعت بارگذارى كمتر باشید، خزي اتفاق مىافتد و بنابراين تحت سطح مشخصى از تنش، كرنشهاى فشاى فشارى بيشترى اتفاق مىافتد، كه اين مسأله منجر به شكست نمونه تحت تنش كمترى خورايند
 استاندارد، تفاوت عمدهاى در مقاومت فشارى حاصل نمى تحقيقات نشان داده است كه در مقايسه با سرعت باركذارى در ماري محدودئ استاندارد و

 استوانهاى فقط

f- عوامل مرتبط با نوع و درصد مصالح بتن و نحوة مراقبت
به جز عوامل فوقالذكر، عوامل ديگرى نيز بر مقاومت فشارى ورى بتن تاثير
 موجود در بتن بر مىگگردند. اين عوامل به صورت خلا خلاصه از قرار زير هستند:

الف- نوع سيمان: نوع سيمان مصرفى در گيرش اوليه تأثير گذاشته و مقاومت

 ساخته شده با انواع سيمان تقريباً يكسان است. حتى گاهى مقاومت دراز مدت بتنهاى ساخته شده با سيمانهاى ديرگير، كمى بيش از مقاومت درازمدت بتنهانى

جدول Y-Y مقاومت تقريبى نسبى بتن بر/ساس نوع سيمان

ب- نسبت آب به سيمان: آبرامز' در سال 1911 دريافت كه رابطهُ معكوسى
 آب به سيمان آبرامز شناخته شده و به صورت رابطهٔ (؟-1) بيان مىگردد.

$$
\begin{equation*}
f_{c}^{\prime}=\frac{k_{1}}{k_{2}^{(W / C)}} \tag{1-r}
\end{equation*}
$$

شايان ذكر است كه بر اساس مشاهدات آزمايشگامى، براى نسبتهای آل آب به

 رعايت نسبت آب به سيمان حدود باری/ • انجام مى گيرد.

ج- مواد سيمانى تكميلى: همان كونه كه قبلاً ذكر شد، مواد سيمانى ديكرى

 افزايش مقاومت فشارى بتن مى تردد.

د- خصوصيات سنگدانه: در بتن معمولى مقاومت دانهها (به جز سنگّدانهمهاى

 ماسه سنگ، مرمر و بعضى از سنگّهاى دكركونى سبـ سبـ شكست زود هنگام اين بتن خواهد شد.
خصوصيات ديكرى از سنى دانهها بهه جز مقاومت- نظير اندازه، دانهبندي،

 مىشود كه در آن روشها هيدراسيون سيمان ارتقاء داده مىشود. اين روشها ها شا شامل كنترل زمان، شرايط رطوبتى و دما بلافاصله پپ از قرار دادن مخلوط بتنى در قالب خواهد بود.
-ا-1 زمان: تحت شرايط مراقبت مرطوب و در دماى معمولى، براى يك بتن
 مقاومت فشارى با كذشت زمان براى بتن ساخته شده با با سيمان نوع I ال و و بـ به صورت هرطوب عمل آورى شده در دماى ACI 209 با استفاده از رابطه (ץ-؟) انجام داد.

$$
\begin{equation*}
f_{c}^{\prime}(t)=f_{c, 28}^{\prime}\left(\frac{t}{4+0.85 t}\right) \tag{T-r}
\end{equation*}
$$

جدول r-r رثّد مقاومت بتن ساخته شده با سيمان نوع I در طول زمان تحت شرايط عمل آورى مناسب

 مقاومت بتن مى گذارد. بعضى از تحقيقات نشان مید

 تا 「ه درصد مقاومت بيشتر نسبت به نمونها دنهايى كه در شرايط اشباع آزمايش مىشوند، از خود نشان مىدهند. مقاومت پائينتر نمونههاى اشباع احتمالاً به دليل

 نسبى . . ا درصد خارج شوند و بنابراين در زمان آزمايش در وضعيت مرا مرطوب
 زمان آزمايش را بر مقاومت فشارى بتن نشان مىدهد.

شكل T- W- تأثير شر/يط عمل آورى و ميزان رطوبت نمونه در زمان آزمايش بر مقاومت فشارى بتن

 درمحدودة دماى شده و مراقبت شود، عمومأ تا
 بتن مشخص را كه در محدودٔ دماى
 شده در دماى Fioc از جدول F-

جدول F-r درصد مقاومت بتن ريخته شله و مراقبت شده در دماى يكا يكسان بر حسب

مختلف

درصد كسب مقاومت				دماى ريختن بتن و مراقبت از آن $)$
¢	روزه If	روزه Y	\% ${ }^{\text {r }}$	
V¢	Δr	f.	r.	f
98	ve	Qr	r.	Ir
$1 .$.	\wedge.	gr	rr	r
1.0	१ท	Ar	$\Delta \mathrm{A}$	48

تغيير شكل بتن تحت تنش فشارى با منحنى تنش-كرنش آن مشخص مىشود.

 گيرد، رفتار غيرخطى آن بيشتر آشكار مىش شود. رفتار غيرخطى بتى تـن تحت تنش

تنش حداكثر •ه درصد مقاومت فشارى آن، مىتوان با يك رفتار خطى تقريب زدي كرنش نظير تنش حداكثر 'f ${ }^{\prime}$ كه با
 متغير باشد؛ اگر چه میتوان

 طراحى به صورت محافظه كارانه فرض مى بشود كه
 و به بيان ديگى، رفتار بتن تحت فشار، تردتر مى شود.

معادلئ رفتارى تغييرات تنش فشارى تك محورى بتن بر حسب كرنش را مى توان به صورت منحنى هاگنستاد كرد. اين منحنى در شكل

$$
f_{c}=f_{c}^{\prime \prime}\left[\frac{2 \varepsilon_{c}}{\varepsilon_{o}}-\left(\frac{\varepsilon_{c}}{\varepsilon_{o}}\right)^{2}\right]
$$

در رابطهٔ (f-Y) در حالى كه با $f_{c}^{\prime \prime}=k_{s} f_{c}{ }^{\prime}$

 محاسبات، رفتار بهترى را از خود نشان مىدهد.

منحنى تنش- كرنش فشارى بتن را همچچنين مىتوان بر اساس معادلئلئ
 -Y-Y

$$
f_{c}=\frac{2 f_{c}^{\prime \prime}\left(\varepsilon_{c} / \varepsilon_{c u}\right)}{1+\left(\varepsilon / \varepsilon_{o}\right)^{2}}
$$

لازم به ذكر است كه منحنى تنش-كرنش بتن، تحت تأثير وضعيت محصور
 جانبى نيز قرار گيرد، شرايط اين نمونى تنش- كرنش به صورت اساسى تغيير وضعيت خري خرا

 محفظهٔ حاوى مايع تحت فشار ، و يا قرار دادن يك لوله فولا
 عرضى به شكل دورييجّ و با فواصل نزديك استفاده شده باشد، تا حدى شرايط

شكل 9-r منحنى تنش-كرنش نمونههاى بتنى در شر/يط معمولى و شر/يط محصورشده

 از منحنى تنش- كرنش بتن را در شرايط معمولى و در شرايط محصور شده، نمايش

شيب منحنى تنش- كرنش بتن به عنوان مدول الاستيسيتهٔ بتن محسوب مىشورد.
 اجزاء بتن و درصد اختلاط، و از همه مهمهتر نحوء تعريف مدول بـن الاستيسيته، متفاوت

خواهد بود.
مدول الاستيسيته معمولاّ به دو صورت تعريف مىشود:

- مدول الاستيسيتٔٔ مماسى 「 كه عبارت است از شيب خط مـلا تنش- كرنش در هر نقطه از منحنى.
- مدول الاستيسيتهٔ متقاطع يا سكانت ' كه عبارت است از شيب خطى كه هر نقطه از منحنى تنش- كرنش را به مبدأ وصل مىكند.

1-9-1 مدول الاستيسيتة استاتيكى بتن

تعاريفى كه براى مدول الاستيسيتٔٔ مماسى و مدول الاستيسيتئ سكانت ارائه شد، منجر به يك عدد واحد براى مدول الاستيسيتهٔ بتن نخواهند شد؛ اين تعاريف براى هر نقطه از منحنى تنش-كرنش بتن، دو عدر عدر براى مدول الاستيسيتهٔ آن بهدست مىدهند. به همين جهت به عنوان مدول الاستيسيتئ استاتيكى بتن، از تعاريف زير استفاده مىشود:

ا- مدول الاستيسيتٔ. مماسى اوليه: شيْب خطى كه مماس بر منحنى تنش-
كرنش در مبدأ رسم مىشود.
r- مدول الاستيسيتٔ سكانت: شيب خطى كه از مبدأ به نقطهاى از منحنى تنش- كرنش كه متناظر با • \& درصد تنش حداكثر تعريف معمولاً به صورت ساده به نام ״مدول الاستيسيتهٔ بتن" خوانده مىى شود. r- مدول الاستيسيتهُ وترى r اين تعريف حالت اصلاح شدهاى از تعريف قبلى است؛ با اين تفاوت كه به جاى مبدأ از يك نقطه از منحنى الا

 منحنى تنش-كرنش مشاهده مىشود.

مدول الاستيسيتئ استاتيكى بتن را بر اساس ACI 318 براى بتن با وزن مخصوص (${ }_{c}$) در محدودء 1500 تا $2500 \mathrm{~kg} / \mathrm{m}^{3}$ مكتوان از رابطهٔ (ץ-9) تعيين كرد.

$$
E_{c}=0.043 w_{c}^{1.5} \cdot \sqrt{f_{c}^{\prime}}
$$

براى بتن معمولى با وزن مخصوص حدود

$$
\begin{gather*}
\text { سادهر به شكل رابطئ (V-Y) بيان مى شود. } E_{c}=4700 \sqrt{f_{c}^{\prime}}
\end{gather*}
$$

آيننامئ 363 ACI براى محاسبئ مدول الاستيسيته در بتن با مقاومت بالا،

$$
\begin{align*}
\text { رابطءٔ (1-r) را پيشنهاد مى كند. } \\
E_{c}=\left(3320 \sqrt{f_{c}^{\prime \prime}}+6900\right)\left(\frac{w_{c}}{2300}\right)^{1.5}
\end{align*}
$$

ض

وقتى كه يك نمونهٔ استوانهاى بتنى تحت فشار قرار گيرد، همزمان با كا كوتاه شدن طول

مقاومت كششى تك محوره بتن

مقاومت كششى بتن ممكن است تحت كشش خالص (كشش مستقيم) و يا كشش ناشى از خمش اندازهگيرى شود. بسته به نوع مقاومت كششى تعريف شده، مقاومت
 دليل كمتر بودن چشمگیير مقاومت كششى بتن نسبت به مقاومت فشارى آن، وجود
 ريزتركهايى در فشار، در ابتدا بسته شده و مر مشكلى براى براى باربرى فشارى ايجاد نمىكنند؛ اما در كشش مانع از انتقال تنش كششى زودرس آن نمونه تحت تنش كششى مى آشوند.

|-II-Y مقاومت كششى بتن تحت كشش خالص

ايجاد تنش كششى خالص به صورت مستقيم در يك نمونءٔ بتنى در آزمايشگاه چندان آسان نيست؛ زيرا اساساً وسايل نگهداشتن نمونه، تنشهاى ثانی ثانويهاى توليد مى كنند كه نمىتوان اثرات آنها را ناديده انگًاشت. استاندارد ASTM C496 براى سنجش مقاومت كششى بتن تحت كشش خالص، آزمايش شكافت كششى يا آزمايش شكافت استوانه' را معرفى مىكند و مقاومت كششى حاصله را با نام آزمايش برزيلى نيز خوانده مىشـى ونى

در آزمايش شكافت استوانه، نمونهٔ بتنى استوانهاى استاندارد با ابعاد ا150×300mm به صورت پيوسته با سرعت ثابت و در محدودهٔ 0.7 تا $1.4 \mathrm{MPa} / \mathrm{sec}$ وارد مى شود تا نمونه شكسته شود. تنش فشارى وارد بر اين نمونه، تنش كششى متى متعامدى ايجاد
 نمونه و تنشهاى ايجاد شده در جهت متعامد را نشان مىدهد

شكل r- ا ا آزمايش شكافت /ستوانه و توزيع تنش درقطر /ستوانه
تنش كششى شكافت خوردگى در آزمايش برزيلى از رابطئ (IT-Y) محاسبه

D قطر استوانه (150mm) است. آزمايش كششى شكاف خوردگى در مقايسه با
كشش مستقيه، • ا تا ال ا درصد مقاومت كششى بتن را بيشتر ارزيابى مى كند.

$$
\begin{equation*}
f_{c t}=\frac{2 P}{\pi l D} \tag{IY-Y}
\end{equation*}
$$

بعضى از محققين براى تعيين مقاومت كششى متوسط (آزمايش برزيلى، رابطهٔ (ץ-1ه) را پيشنهاد كردماند.

$$
f_{c m}=0.54 \sqrt{f_{c}^{\prime}}
$$

استاندارد ASTM C78 براى سنجش مقاومت كششى بتن تحت كشش ناشى از خمش، بارگذارى خمشى متمركز در يك سوم دهانئ تير بتنى با با ابعاد共 $150 \times 150 \times 500 \mathrm{~mm}$ 0.8 تا $0.2 \mathrm{MPa} / \mathrm{sec}$ ، و تا لحظهٔ ترى خوردگى و شكست تير بارگذارى مى شود. تنش كششى لحظة ترك خوردگى (شكست) تير به نام مدول گسيختگى ' و يا مقاومت خمشى ناميده شده و با f_{r} نمايش داده میى
 به ترتيب عرض، ارتفاع و طول تير بوده و P كل بار است كه در در دو نقطه به فاصلئ يك

$$
f_{r}=\frac{P l}{b d^{2}}
$$

ACI 318 براى تعيين مدول گسيختگى جهت محاسبات خيز تيرها، رابطهٔ (IV-Y) را پيشنهاد نموده است.

$$
f_{r}=0.7 \sqrt{f_{c}^{\prime}}
$$

|F-Y مقاومت خستگى بتن

آنحّه تا كنون در مورد مقاومت بتن گفته شد، همه مربوط به يك بارگذارى استاتيكى

 كوچكتر از مقاومت فشارى استاتيكى آن ماده است، دچار شكاره

 را در مورد بتن دنبال مىكنيم.

شكل

مقاومت خستگى بتن را مىتوان بر اساس منحنى اصلاح شدء گودمن ' ارزيابى كرد. اين منحنى در شكل Y- Y (${ }_{l}$) و حد بالايى تنش $\left(\sigma_{h}\right)$ مشخص باشد، با استفاده از منحنى اصلاح شده گودمن مىتوان مشخص كرد كه در اين محدوده تغييرات تنش، با چه سيكلى از بارگذارى نمونةٔ بتنى در اثر خستگى شكسته خواهد شد. بدين منظور نقطهاى با مختصات افقى $\sigma_{l} / f_{c}^{\prime}$ و مختصات قائم $\sigma_{h} / f_{c}^{\prime}$ را مشخص مى كنيه؛ وضعيت اين نقطه نسبت به منحنىهاى موجوه، تعداد سيكل بارگذارى مربوط به شكست اين نمونه در اثر خستگى را تعيين خواهد نمود.

شكل 1A-Y منحنى /صلاحى تودمن برای تعيين مقاومت خستكى بتن تحت فشار

دقت شود كه در مسائل عملى، حد پايينى تنش (${ }^{\text {(})}$ ، تنش ناشى از بار مرده و يا بار مرده به علاوء قسمتى از بارهاى زنده كه به صورت ثابت وارد مىشوند،
 است. توجه شود كه با استفاده از منحنى اصلاحى گودمن، به شرط آن كه حد پايينى تنش مشخص باشد، مقاومت خستگى به ازاى تعداد مشخصى از سيكل بارگذارى را نيز مىتوان تعيين كرد. نمودار اصلاحى گودمن نشان مىدهد كه براى يك دامنهٔ ثابت
 يك بتن مشخص مىتواند تحمل كند، كمتر خواهد بود. همپچنین هر چه نسبت تعداد سيكل كمترى از بارگذارى رخ مىدهد. در همين ارتباط، تحقيقات نشان داده است كه فر كانس بار متناوب تأثيرى بر مقاومت در مقابل خستگى نخواهد داشت داشت

افت يا انقباض' (و يا آبرفتگى)، جمع شدگى و كاهش حجم بتن است كه با از دست رفتن و يا خارج شدن آب جذب شده در ساختار خمير سيمان از بتن، اتفاق مىافت
 شدگى و يا افت كربناسيون تقسيمبندى شود.

ץ-1

افت پلاستيك بتن در حقيقت انقباضى است كه در خمير سيمان پلاستيك و در اثر تبخير از سطح بتن و يا جذب آب توسط سطح بتن خشك شدهٔ زيرين، رخ مىدهد. اين افت در حدود $ا$ درصد حجم سيمان خشك، ان انقباض ايجاد كرده و تنش كششى

 ايجاد كند (بين ا تا 1 ساعت پس از ريختن بتن). هر چه

افت خودگيرى ' يك نوع خاصى از افت است كه در آن جابجايى آب به داخل يا خارج
 مىدهد. اين افت به سهولت از افت در بتن سخت شده تميز داده نمىشود. مقدار افت خودگيرى بسيار اندك بوده و كرنش آن در محدوده لازم به ذكر است كه اگر در دورئ هيدراسيون سيمان، بتن به طور مداوم در مجاورار
 اثر جذب آب توسط زل سيمان همراه خواهد بود كه به آن تورم يا باد كردن ُ گويند.

افت خشك شدگى r انقباضى است كه در بتن سخت شده و در اثر خارج شدن آب جذب شده در ساختار خمير سيمان، به دليل قرار گرفتن بتن در محيط با رطوبت نسبى كمتر از . . ا درصد، اتفاق مىافتد. تا زمانى كه خمير سيمان اشباع در رطوبت

اگر بتنى كه در معرض رطوبت نسبى كمتر از . . ا درصد قرار گرفته و با
 حدودى انبساط مىيابد؛ اما فقط قسمتى از انقباض جبران مى اشورد. اين قسمت از افت

تركيب دى اكسيد كربن موجود در هوا با سيمان هيدراته نيز به انقباض بتن منجر مى شود كه اين فرآيند افت كربناسيون ناميده مىشود. CO2
 در هواى شهرهاى بزرگ متغير باشد. دىاكسيد كربن در حضور رطوبت تشكيل اسيد
 خمير سيمان هيدراته را مطابق رابطةٔ (ץ-9 (٪)، به كربنات كلسيهم تبديل مى بكند.

$$
\begin{equation*}
\mathrm{H}_{2} \mathrm{CO}_{3}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCO}_{3}+2 \mathrm{H}_{2} \mathrm{O} \tag{19-广}
\end{equation*}
$$

فرآيند كربناسيون ممكن است انقباضى معادل افت خشك شدگى را در بتن ايجاد كند. با اين وجود همانگونه كه در شكل Y Y Y

لازم به ذكر است كه در فرآيند كربناسيون، با جا كرفتن كربنات كلسيم توليد

 مى يابد. با اين وجود، فرايند كربناسيون محيط قليايى خمير سيمان را خنثى نموديه و وا

 در اين فرآيند، قسمتهايى ازيى از بتن كه در آن كربناسيون اتفاق افتاده به صورت بیى برنگ، و ساير قسمتها به رنگً صورتى در مى آيد.

تغيير شكل ماده تحت تنش ثابت در طول زمان را خزش

 خزش در طول زمان در نمونهٔ بتنى را نشان مىدهده.
 نمونه وارد شود، بلافاصله كرنش الاستيك مىشود. آنگاه با گذشت زمان، رفته رفته كرنش در جسم افزايش مى يابد كابد كه اين كرنش اضافى ناشى از خزش است. چنانچچه در زمان شود، در همان زمان كرنش الاستيك
 و در جهت جبران كرنش ناشى از خزش در مرحلها
 قسمتى از كرنش ناشى از خزش به صورت برگشت نايذير در نمونه ذخيره مىشود.

حال اگر در زمان t_{2} مجدداً بر روى نمونه بار گذارى شود، مجدداً كرنش الاستيك اوليه

 بارگذارى اوليه، مجانب خواهد شدر در اري

شكل KY-Y كزنشهاى /يجاد شده در اثر خزش در نمونئ بتنى در طول زمان تحت بارگذارى، باربردارى، و باركذارى مجدد

دليل اصلى یديدهٔ خزش در بتن، خروج آب جذب شدء سطحى از ساختار
 اين مسأله در حقيقت دليل اصلى وقوع پديدء انقباض نيز مى انباشد؛ با اين تفاوت كه در در پديدء افت خشك شدگى در بتن، خروج آب جذب شدء سطحى، به دليل تفاوت رطوبت نسبى محيط با رطوبت بتن است، و نه به دليل إِمال تنش. البته براى وقوع چديده خزش، دلايل ديگرى همحون رفتار غير خطى رابطهٔ تنش-كرنش بتن
 الاستيك در دانهها كه به صورت تأخيرى و با گَذشت زمان رخ مىدهرهد، وجود دارد.

